网络攻击模型_网络攻击图模拟

hacker|
99

说明网络安全攻击的四种形式和攻击目标、并画出网络安全攻击的四种形式示意图。

网络安全攻击形式

一般入侵网络攻击 扫描技术 拒绝服务攻穗余击技术 缓隐岩冲区溢出 后门技术 Sniffer技术猜携滚 病毒木马

如何用matlab模拟无尺度网络收到随机攻击

tic;

%%%%%% 四个输入变量

I=10; %% 表示现实的次数,I要大于或者等于3,才能对节点的度数用邻接矩阵进行统计

N=1000; %% 表示网络的节咐返点的个数

m0=3; %% 表示网络的初始节点个数

m=1; %% 表示新点与旧网络连边的数目

realization_of_distribution=sparse(I,N);

for J=1:I % 对I次现实做平均,然后用这个平均值近似网络的度分布

format long;

adjacent_matrix=sparse(m0,m0);

for i=1:m0

for j=1:3

if j~=i

adjacent_matrix(i,j)=1;

end

end

end

adjacent_matrix=sparse(adjacent_matrix);

node_degree=sparse(1,m0); % node_degree表示各个节点的度数

for p=1:m0

%last_element=sparse(m0,1);

%last_element=cumsum(adjacent_matrix(1:m0,p));

%node_degree(p)=last_element(m0);

node_degree(p)=sum(adjacent_matrix(1:m0,p));

end

%%%%%%%%%%%%%%%%%%%%%%%%%

% 每次加入一个新点,新点和老点之间按照择优概率进行连接,

% 值得注意的是,每次新点加入之后,网络的择优概率都发生变化,

% 每一次循环都是一个相对独立的整体,要把流程进行分割处理

for iteration=4:N

[J,iteration]; % 控制现实和迭代的次数

total_degree=2*m*(iteration-4)+6; %%% 迭代之前的网络各个节点的度数之和

degree_frequency=node_degree/total_degree; %%% 每个节点的度数的频数,这是新点连边的择优概率

cum_distribution=cumsum(degree_frequency); %%% cum_distribution把区间 [0,1] 分成若干个小区间,从而对这些个小区间进行投点实验

interval=cum_distribution(1:(iteration-1)); %%% 这是小区间的端点,是cum_distribution的前 iteration-1 个元素

%**************************************************************************

%%% 下面把 r1 和 [0,1] 内的各个小区间的端点进行比较,落在第 i 小区间,就意味着和第 i 个节点相连边 %%%

choose=zeros(1,m); %%% choose存塌李放的是和新点相连接的一个老点

%%% 选出第一个和新点相连接的顶团简迟点

r1=rand(1);

if r1

choose(1)=1;

elseif r1=interval(iteration-2)

choose(1)=iteration-1;

elseif (r1=interval(1))r1

for j=2:iteration-2

if (r1=interval(j-1))r1

choose(1)=j;

break;

end

end

end

有关网络攻击的世界地图是怎么开发的

有关网络攻击的世界地图是怎么开发的?比如 ZoomEye 经常有一些这样很酷的地图~

数据可视化一直是一个很有趣的领域。许多普通帆销人直观上难以感受的数据,如漏洞分布、实时流量分析等,通过数据可视化的手法,可以清晰地看出数据的结构特点和每一个部分之间的内在联系。

数据可视化除了常用的图表之类,与地理位置信息系统(GIS)的结合也是其中一个有趣的应用。

首先是数据的准备,要做全球的分布图,得有全网扫描的实态盯游力才行哦。HeartBleed 风波的当天晚上,ZoomEye 就给全球的公网机器做了一次大体检,第一时间统计了受影响 443 端口服务器的数据,包括地区分布数量、经纬度等信息。第二天我们就公布了这个3D版的全球影响分布。在接下来的几天内,我们又针对同样受波及的465,993,995等端口进行了持续监测,得到了第一手数据。

IP到经纬度的转换使用了著名的 MaxMind - GeoIP2 ,一个 IP 地址的地理位置数据库,可以根据 IP 获取国家、地区、经纬度等信息。这里插播一个花絮,很多人都注意到 HeartBleed 漏洞分布在南极点上也有一个红点。我检查了数据发现的确是有这样一台存在漏洞的服务器,IP 地址在 MaxMind 的数据库查询结果也真是南极点。南极要是真有服务器,能省下很多机房散热的成本呢,不过保持网络连接就很困难了。这可能只是 MaxMind 里的一个彩蛋而已?

这个3D地球仪是从 Chrome 的实验项目 WEBGL-Globe 修改而来。WEBGL-Globe 基于 THREE.js,是利用 WEBGL 技术在网页上创建 3D 交互内容的一个演示,可以直直观地在地球仪上展示数据的地理位置和数量。关于这个工具,在官网上可以看到更多例子。

基于 WEBGL-globe 开发的应用还有这个实时的比特币交易展示 Realtime Bitcoin Globe 。在每一笔交易发生的时候,在地图上会根据数额显示对应大小的图形,并自动跳转到对应经纬度。数据实时传输使用了 WebSocket 技术,同样也是 HTML5 的新特性。这个演示本身不开源,但是在 GitHub 上有一个类似的工程 diox/bitcoin-websockets-globe 可做参考。

Google 在 3D 地球的应用上还有另一个很有代表性的例子 Small Arms Imports / Exports 。这个演示是 Google Ideas 在 2012 年根据和平研究所Oslo提供的军火进出口数据描绘的交互可视化工具。比 WEBGL-Globe 多了一个非常重大的突破是,他的国家地区是可以点击的,单击之后可以出现对应国家的数据,还提供了一个时间轴以切换不同年份。

视觉效果让人印象极其深刻,不过在这几个演示里面是最消耗系统资源的。

这个演示的源代码在 dataarts/armsglobe · GitHub 。不过编码风格比较差,跨脚本的全局变量共享给二次开发造成了巨大的难度,学习一下就好了。

真正把 3D 技术做到登峰造极的是逆天的俄罗斯人。卡巴斯基制作的这个实时网络威胁地图,支持的展示有定向攻击路径,地点;切换平面图和3D球体时有变换动画;每一个国家区域都是矢量图,无限放大也不会影响清晰度;交互性和实用性上简直丧心病狂;渲染3D的代码中没有依赖任何第三方库(包括THREE.js)。

不仅在视觉上非常炫目,性能优化也做到则谨了极致。数据传输使用了二进制数组,编码成base64之后打包成JSON的办法,压缩率非常理想。在以上介绍的几个网页 3D 程序中,这是资源占用最少,操作最流畅的一个。

唯一有些坑爹的是“real-time”有些名不副实,其实这个程序只会每隔一段时间去请求服务器后端静态的 json 数据文件。不过已经非常逆天了。这个东西不开源,压缩过的脚本读起来也比较吃力,应用在自己的项目中有些困难。

看完上面几个演示估计都目瞪口呆了吧。WEBGL 目前还没有大规模地在网页开发中应用,许多项目都只是实验性质。前端开发者最要命也是最痛恨的是用户浏览器的兼容问题,尤其是大量过时的 IE 浏览器。

所以在全球分布图的方案上,除了 3D,我们还提供了备选的平面图版本。

ZoomEye 使用的 2D 分布图和 HoneyMap 都用了 jVectorMap 开源库。这个开源库使用矢量图渲染地图,可以无限缩放。支持两种类型:散点分布(HoneyMap 的实时地点)和地区统计(ZoomEye的漏洞分布图)。还可以根据需要选择地图,常用的有全球国家/地区,中国省份地图,美国各州地图等。支持IE6。

做平面图还可以直接使用 Google Maps API ,而且浏览器兼容性也不错。Google Maps 上的附着物可以放路标、折线、多边形、自定义绘图、热力图等。可能唯一的缺点就是会遇上我朝特有的偶发性打不开网页的情况了。

当然,百度什么的也是不错的。

拒绝服务攻击是如何导致的?

拒绝服务攻击即攻击者想办法让目标机器停止提供服务,是黑客常用的攻击手段之。其实对网络带宽进行的消耗性攻击只是拒绝服务攻击的一小部分,只要能够对目标造成麻烦,使某些服务被暂停甚至主机死机,都属于拒绝服务攻击。拒绝服务攻击问题也一直得不到合理的解决,究其原因是因为这是由于网络协议本身的安全缺陷造成的,从而拒绝服务攻击也成为了攻击者的终极手法。攻击者进行拒绝服务攻击,实际上让服务器实现两种效果:一是迫使服务器的缓冲区满,不接收新的请求;二是亩谨厅使用IP欺骗,迫使服务器把合法用户的连接复位,影响合法用户的连接

原理

SYN Flood

SYN Flood是当前最流行的DoS(拒绝服务攻击)与DDoS(Distributed Denial Of Service分布式拒绝服务攻击)的方式之一,这是一种利用TCP协议缺陷,发送大量伪造的TCP连接请求,使被攻击方资源耗尽(CPU满负荷或内存不足)的攻击方式。 SYN Flood攻击的过程在TCP协议中被称为三次握手(Three-way Handshake),而SYN Flood拒绝服务 典型的分布式拒绝服务攻击网络结构图

攻击就是通过三次握手而实现的。 (1) 攻击者向被攻击服务器发送一个包含SYN标志的TCP报文,SYN(Synchronize)即同步报文。同步报文会指明客户端使用的端口以及TCP连接的初始序号。这时同被攻击服务器建立了第一次握手。 (2) 受害服务器在收到攻击者的SYN报文后,将返回一个SYN+ACK的报文,表示攻击者的请求被接受,同时TCP序号被加一,ACK(Acknowledgment)即确认,这样就同被攻击服务器建立了第二次握手。 (3) 攻击者也返回一个确认报文ACK给受害服务器,同样TCP序列号被加一,到此一个TCP连接完成,三次握手完成。 具体原理是:TCP连接的三次握手中,假设一个用户向服务器发送了SYN报文后突然死机或掉线,那么服 分布式拒绝服务攻击网络结构图

务器在发出SYN+ACK应答报文后是无法收到客户端的ACK报文的(第三次握手无法完成),这种情况下服务器端一般会重试(再次发送SYN+ACK给客户端)并等待一段时间后丢弃这个未完成的连接。这段时间的长度我们称为SYN Timeout,一般来说这个时间是分钟的数量级(大约为30秒~2分钟);一个用户出现异常导致服务器的一个线程等待1分钟并不是什么很大的问题,但如果晌棚有一个恶意的攻击者大量模拟这种情况(伪造IP地址),服务器端将为了维护一个非常大的半连接列表而消耗非常多的资源。即使是简单的保存并遍历也会消耗非常多的CPU时间和内存,何况还要不断对这个列表中的IP进行SYN+ACK的重试。实际上如果服务器的TCP/IP栈不够强大,最后的结果往往是堆栈溢出崩溃—— 即使服务器端的迅隐系统足够强大,服务器端也将忙于处理攻击者伪造的TCP连接请求而无暇理睬客户的正常请求(毕竟客户端的正常请求比率非常之小),此时从正常客户的角度看来,服务器失去响应,这种情况就称作:服务器端受到了SYN Flood攻击(SYN洪水攻击)。 SYN COOKIE 防火墙是SYN cookie的一个扩展,SYN cookie是建立在TCP堆栈上的,他为linux操作系统提供保护。SYN cookie防火墙是linux的 一大特色,你可以使用一个防火墙来保护你的网络以避免遭受SYN洪水攻击。 下面是SYN cookie防火墙的原理 client firewall server ------ ---------- ------ 1. SYN----------- - - - - - - - - - - 2. ------------SYN-ACK(cookie) 3. ACK----------- - - - - - - - - - - 4. - - - - - - -SYN--------------- 5. - - - - - - - - - ------------SYN-ACK 6. - - - - - - -ACK--------------- 7. ----------- relay the ------- ----------- connection ------- 1:一个SYN包从C发送到S 2:防火墙在这里扮演了S的角色来回应一个带SYN cookie的SYN-ACK包给C 3:C发送ACK包,接着防火墙和C的连接就建立了。 4:防火墙这个时候扮演C的角色发送一个SYN给S 5:S返回一个SYN给C 6:防火墙扮演C发送一个ACK确认包给S,这个时候防火墙和S的连接也就建立了 7:防火墙转发C和S间的数据 如果系统遭受SYN Flood,那么第三步就不会有,而且无论在防火墙还是S都不会收到相应在第一步的SYN包,所以我们就击退了这次SYN洪水攻 击。

IP欺骗DOS攻击

DDOS攻击给运营商带来的损害

这种攻击利用RST位来实现。假设现在有一个合法用户(61.61.61.61)已经同服务器建立了正常的连接,攻 DDOS攻击

击者构造攻击的TCP数据,伪装自己的IP为61.61.61.61,并向服务器发送一个带有RST位的TCP数据段。服务器接收到这样的数据后,认为从61.61.61.61发送的连接有错误,就会清空缓冲区中建立好的连接。这时,如果合法用户61.61.61.61再发送合法数据,服务器就已经没有这样的连接了,该用户就必须从新开始建立连接。攻击时,攻击者会伪造大量的IP地址,向目标发送RST数据,使服务器不对合法用户服务,从而实现了对受害服务器的拒绝服务攻击。

UDP洪水攻击

攻击者利用简单的TCP/IP服务,如Chargen和Echo来传送毫无用处的占满带宽的数据。通过伪造与某一主机的Chargen服务之间的一次的UDP连接,回复地址指向开着Echo服务的一台主机,这样就生成在两台主机之间存在很多的无用数据流,这些无用数据流就会导致带宽的服务攻击。

Ping洪流攻击

由于在早期的阶段,路由器对包的最大尺寸都有限制。许多操作系统对TCP/IP栈的实现在ICMP包上都是规定64KB,并且在对包的标题头进行读取之后,要根据该标题头里包含的信息来为有效载荷生成缓冲区。当产生畸形的,声称自己的尺寸超过ICMP上限的包也就是加载的尺寸超过64K上限时,就会出现内存分配错误,导致TCP/IP堆栈崩溃,致使接受方死机。

泪滴(teardrop)攻击

泪滴攻击是利用在TCP/IP堆栈中实现信任IP碎片中的包的标题头所包含的信息来实现自己的攻击。IP分段含有指明该分段所包含的是原包的哪一段的信息,某些TCP/IP(包括service pack 4以前的NT)在收到含有重叠偏移的伪造分段时将崩溃。

Land攻击

Land攻击原理是:用一个特别打造的SYN包,它的原地址和目标地址都被设置成某一个服务器地址。此举将导致接受服务器向它自己的地址发送SYN-ACK消息,结果这个地址又发回ACK消息并创建一个空连接。被攻击的服务器每接收一个这样的连接都将保留,直到超时,对Land攻击反应不同,许多UNIX实现将崩溃,NT变的极其缓慢(大约持续5分钟)。

Smurf攻击

一个简单的Smurf攻击原理就是:通过使用将回复地址设置成受害网络的广播地址的ICMP应答请求(ping)数据包来淹没受害主机的方式进行。最终导致该网络的所有主机都对此ICMP应答请求作出答复,导致网络阻塞。它比ping of death洪水的流量高出1或2个数量级。更加复杂的Smurf将源地址改为第三方的受害者,最终导致第三方崩溃。

Fraggle攻击

原理:Fraggle攻击实际上就是对Smurf攻击作了简单的修改,使用的是UDP应答消息而非ICMP

0条大神的评论

发表评论